Scattering-limited and ballistic transport in a nano-CMOS circuit

نویسندگان

  • Ismail Saad
  • Michael L. P. Tan
  • Aaron C. E. Lee
  • Razali Ismail
  • Vijay K. Arora
چکیده

The mobility and saturation velocity in the nanoscale metal oxide semiconductor field effect transistor (MOSFET) are revealed to be ballistic; the former in a channel whose length is smaller than the scattering-limited mean free path. The drain-end carrier velocity is smaller than the ultimate saturation velocity due to the presence of a finite electric field at the drain. The current-voltage characteristics of a MOSFET are obtained and shown to agree well with the experimental observations on an 80 nm channel. When scaling complementary pair of NMOS and PMOS channels, it is shown that the length of the channel is proportional to the channel mobility. On the other hand, the width of the channel is scaled inversely proportional to the saturation velocity of the channel. The results reported may transform the way the ULSI circuits are designed and their performance evaluated. © 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical modelling and performance analysis of Double-Gate MOSFET-based circuit including ballistic/quasi-ballistic effects

In this paper we present a compact model of DoubleGate MOSFET architecture including ballistic and quasiballistic transport down to 20 nm channel length. In addition, this original model takes into account short channel effects (SCE/DIBL) by a simple analytical approach. The quasi-ballistic transport description is based on Lundstrom’s backscattering coefficient given by the socalled flux metho...

متن کامل

Ballistic mobility and saturation velocity in low-dimensional nanostructures

Ohm’s law, a linear drift velocity response to the applied electric field, has been and continues to be the basis for characterizing, evaluating performance, and designing integrated circuits, but is shown not to hold its supremacy as channel lengths are being scaled down. In the high electric field, the collision-free ballistic transport is predicted, while in low electric field the transport ...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Ballistic InAs nanowire transistors.

Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theo...

متن کامل

Ballistic phonon transport in holey silicon.

When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009